[1] Tang Y, Dong W, Zou X, Shi B*, Wang N, Ignition and combustion of a dense powder jet of micron-sized aluminum particles in hot gas, Proceedings of the Combustion Institute, 2023, in press.
[2] Tang Y, Li S, Yao Z, Huang B, Li S*, Ignition of an ionic liquid dual-mode monopropellant using a microwave plasma torch, Proceedings of the Combustion Institute, 2023, in press.
[3] Tang Y*, Simeni Simeni M, Yao Q, Adamovich I, Non-premixed Counterflow Methane Flames in DC/AC/NS Electric Fields, Combustion and Flame, 2022, 240: 112051.
[4] Tang Y, Xie D, Shi B*, Wang N, Li S, Flammability enhancement of swirling ammonia/air combustion using AC powered gliding arc discharges, Fuel, 2022, 313: 122674.
[5] Wang Kuanyu,Xie Dingjiang,Cao Qing,Hu Jie,Tang Yong*,Shi Baolu*,Wang Ningfei,Characteristics of oxy-methane flame in an axial/tangential swirl jet burner, Experimental Thermal and Fluid Science, 2022,139:110732.
[6] Tang Y, Zou X, Dong W, Shi B*, Wang N, Li S, Temperature measurements and high-speed photography of micron-sized aluminum particles burning in methane flat-flame exhaust, Fuel, 2021, 306: 121743.
[7] Tang Y, Sun J, Shi B, Li S, Yao Q*, Extension of flammability and stability limits of swirling premixed flames by AC powered gliding arc discharges, Combust and Flame, 2021, 231: 111483.
[8] Tang Y, Yao Q*, Zhuo J, Li S, Plasma-assisted pyrolysis and ignition of pre-vaporized n-heptane, iso-octane and n-decane, Fuel, 2021, 289: 119899.
[9] Sun J, Tang Y, Li S*. Plasma-assisted Stabilization of Premixed Swirl Flames by Gliding Arc Discharges. Proceedings of the Combustion Institute, 2021, 38(2):2305-2314
[10] Sun J, Ren Y, Tang Y, Li S*. Influences of heat flux on extinction characteristics of steady/unsteady premixed stagnation flames. Proceedings of the Combustion Institute, 2021, 38(4): 6733-6741
[11] Zou X, Wang N, Wang C, Wang J, Tang Y, Shi B*, Investigation on the microscale combustion characteristics of AP/HTPB propellant under wide pressure range, Fuel, 2021,121652
[12] Orr K, Tang Y, Simeni Simeni M, Bekerom D, Adamovich I*. Measurements of electric field in an atmospheric pressure helium plasma jet by the E-FISH method. Plasma Sources Science & Technology, 2020, 29(3): 35019.
[13] Tang Y, Zhuo J, Cui W, Li S, Yao Q*. Non-premixed flame dynamics excited by flow fluctuations generated from Dielectric-Barrier-Discharge plasma. Combustion and Flame, 2019, 204: 58~67
[14] Tang Y, Simeni Simeni M, Frederickson K, Yao Q, Adamovich I*. Counterflow diffusion flame oscillations induced by ns pulse electric discharge waveforms. Combustion and Flame, 2019, 206: 239~248
[15] Tang Y, Zhuo J, Cui W, Li S, Yao Q*. Enhancing ignition and inhibiting extinction of methane diffusion flame by in situ fuel processing using dielectric-barrier-discharge plasma. Fuel Processing Technology, 2019, 194: 106128
[16] Tang Y, Yao Q*, Cui W, Pu Y, Li S. Flow fluctuation induced by coaxial plasma device at atmospheric pressure. Applied Physics Letters, 2018, 113(22): 224101
[17] Simeni Simeni M, Tang Y, Frederickson K, Adamovich I*. Electric field distribution in a surface plasma flow actuator powered by ns discharge pulse trains. Plasma Sources Science & Technology, 2018, 10: 104001
[18] Simeni Simeni M, Tang Y, Huang Y, Zakari Eckert, Kraig Frederickson, Adamovich I*. Electric field in ns pulse and AC electric discharges in a hydrogen diffusion flame, Combustion and Flame, 2018, 197: 254-264
[19] Tang Y, Kong C, Zong Y, Zhuo J, Li S, Yao Q*. Combustion of aluminum nanoparticle agglomerates: From mild oxidation to microexplosion. Proceedings of the Combustion Institute, 2017, 36(2): 2325~2332
[20] Xiao Z, Tang Y, Zhuo J*, Yao Q. Effect of the interaction between sodium and soot on fine particle formation in the early stage of coal combustion, Fuel, 2017, 206: 546~554